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Phase ordering dynamics in binary mixtures with annealed vacancies
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We formulate mean-field dynamical models for phase ordering dynamics in binary mixtures with both
mobile and quenched vacancies or impurities. We use these models to obtain numerical results for two
important problems in phase ordering dynamics, viz., the kinetics of vacancy-mediated segregation and the
kinetics of ordering in a ferromagnet with annealed vacancies.@S1063-651X~98!01102-7#

PACS number~s!: 64.70.2p
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I. INTRODUCTION

Two-phase mixtures can exist in either a homogene
state~at high temperatures! or an ordered state~at low tem-
peratures!, where the system separates into domains rich
one or the other constituent of the mixture. When a tw
phase mixture in the homogeneous state is quenched b
its critical temperature, it evolves towards the ordered s
and the dynamics of this evolution is referred to as ‘‘pha
ordering dynamics’’@1#. The study of phase ordering dynam
ics has evoked much research interest and there have
many experimental, numerical, and analytical studies of
problem@1#. For pure and isotropic systems, it is now we
established that the coarsening domains exhibit a morp
logical self-similarity in time and are characterized by
time-dependent length scaleL(t). This characteristic length
scale exhibits a power-law behavior in time, i.e.,L(t);tf,
wheret is the time andf is referred to as the growth expo
nent. The functional form of the scaled structure fact
which characterizes the domain morphology@2#, and the
value of f depend critically on whether or not the ord
parameter is conserved.

Most numerical studies of phase ordering dynamics s
with microscopic models or their coarse-grained coun
parts. At the microscopic level, the case with nonconser
order parameter~e.g., the ordering of a ferromagnet! is stud-
ied via Monte Carlo~MC! models, which associate Glaub
spin-flip kinetics with a two-state Ising model. In these mo
els, a spinSi at a sitei corresponds to an ‘‘up’’ or ‘‘down’’
state and can be flipped at random because there is no
straint on the order parameter, which is the local magnet
tion. The case with conserved order parameter~e.g., the seg-
regation of a binary alloyAB! is complicated by a
conservation constraint on the order parameter, which is
local difference in densities ofA andB atoms. Any reason-
able dynamical model must respect the fact that the num
of A and B atoms are unchanged in time. This is usua
mimicked at the microscopic level by associating Kawas
spin-exchange kinetics@3# with a two-state Ising model. In
this case, the spin variableSi describes whether a sitei is
occupied by anA or a B atom.

At the phenomenological level, phase ordering dynam
is usually modeled in terms of partial differential equation
Thus the case with a nonconserved order parameter~NCOP!
571063-651X/98/57~2!/1873~13!/$15.00
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is modeled by the time-dependent Ginzburg-Landau~TDGL!
equation

]c~rW,t !

]t
52

dH@c~rW,t !#

dc~rW,t !
, ~1!

wherec(rW,t) is the order parameter~spontaneous magnet
zation in the case of a ferromagnet! at pointrW and timet, and
H@c(rW,t)# is an appropriate free-energy functional, usua
taken to be of thef4 form. The case with a conserved ord
parameter~COP! is modeled by the Cahn-Hilliard~CH!
equation@4#

]c~rW,t !

]t
5¹2FdH@c~rW,t !#

dc~rW,t !
G , ~2!

where conservation is imposed by associating an ext
2¹2 operator with the chemical potential in Eq.~1!. Ther-
mal noise terms can also be introduced into Eqs.~1! and~2!,
but are not necessary as it has been demonstrated tha
effects of thermal noise are irrelevant for the asymptotic
havior of phase ordering@5#. Equations~1! and~2! should be
treated as purely phenomenological models and are not
orously derivable from microscopic models. However, th
can be motivated from appropriate microscopic models~i.e.,
the two-state Ising model with Glauber or Kawasaki kin
ics! via a master equation approach in conjunction with
mean-field approximation@6#.

At present, most well-established results for phase ord
ing systems have been obtained in the context of pure
isotropic systems. Of course, real experimental systems
neither pure nor isotropic. Recent interest in this area
focused on incorporating experimentally relevant effects i
models of phase ordering dynamics. In particular, there h
been a large number of studies of the effects of b
quenched@7–9# and annealed@10–15# disorder on the dy-
namics of domain growth.

Quenched impurities trap growing domains and dra
cally alter the asymptotic domain growth law in a mann
that is not yet fully understood@7,8#. However, the morphol-
ogy of coarsening domains is unaffected by the presenc
quenched disorder~other than in the case with random field
@9#! and the functional form of the scaled structure factor
1873 © 1998 The American Physical Society
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independent of the amplitude of quenched disorder, a p
erty that has been referred to as ‘‘superuniversal scaling

Annealed impurities are relevant in two important clas
of systems, viz., binary mixtures with surfactants~e.g., mi-
croemulsions! and binary mixtures with vacancies or imp
rities. There have been a number of studies of phase orde
in binary mixtures with surfactants@10,11#. There is a good
understanding~at least numerically! of the functional form of
the scaled structure factor, which again appears to be u
fected by the presence of surfactants. However,
asymptotic domain growth law is substantially altered and
the best of our knowledge, there is still no consensus on
functional form of the asymptotic growth law.

In a recent paper, we have initiated a study of phase
dering dynamics with annealed vacancies@16#. In the present
paper we expand the scope of this study and present det
results for phase ordering dynamics in binary mixturesAB
with annealed vacancies. There have been a number of
vious studies of this problem@12–15# and we briefly review
extant results here. Two classes of systems have been
sidered, viz., the ordering of ferromagnets with annealed
cancies, the NCOP case, and the segregation of binary
tures with annealed vacancies, the COP case. Of cours
should be kept in mind that the vacancy field in both ca
constitutes an additional order parameter, which is c
served.

Srolovitz and Hassold@12# conducted a MC study of dif-
fusing impurities~e.g., vacancies! on domain growth in the
NCOP case. They found that the vacancies tended to mig
to the interfacial regions. This leads to a dynamical crosso
in the domain growth law fromL(t);t1/2 @known as the
Lifshitz-Cahn-Allen ~LCA! law# in the early stages to a
slower, nonalgebraic growth in the late stages. Howev
they did not examine the scaling behavior of the struct
factor. Mouritsen and Shah@12# also investigated a simila
model ~though with antiferromagnetic interactions! and ar-
rived at similar conclusions. A recent MC study of th
NCOP case with a single vacancy was conducted by Vi
and Planes@12#. In their model, dynamics is introduced v
vacancy exchanges with theA or B atoms of a binary mix-
ture with antiferromagnetic interactions. They find the som
what puzzling result that the growth law is faster than
LCA law, a possible consequence of allowing vacancy
changes with next-nearest-neighbor sites also.

At the coarse-grained level, the NCOP case can be
scribed in terms of coupled dynamical equations for two
der parameters: one for the ordering field, which is nonc
served; and the other for the vacancy field, which
conserved. In the classification of Hohenberg and Halpe
@17#, this is referred to as modelC. Models in this category
have been numerically simulated by Ohtaet al. @13# and ana-
lytically studied by Elderet al. @13#.

The COP case is considerably more interesting beca
vacancies play a critical role in phase separation dynamic
is well known to materials scientists that Kawasaki excha
kinetics, which involves the direct interchange ofA and B
atoms in anAB mixture, is energetically unrealistic. As
matter of fact, it is believed that phase separation in bin
alloys is mediated by vacancies@18#. Thus, in the context of
binary alloys, vacancies do not merely serve as experime
complications in phase separation studies. Rather, they a
p-
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crucial factor in the dynamics of segregation. Vacanc
mediated phase separation was studied by Yaldram
Binder@14# via MC studies of a three-state spin model. Th
studies demonstrated that the vacancies tended to clust
the interfacial regions. Furthermore, they found that
qualitative behavior of vacancy-mediated segregation
similar to that for the usual direct-exchange mechanis
However, they did not make a quantitative comparison a
also did not investigate the intermediate- or late-stage beh
ior. A more recent MC study is due to Fratzl and Penro
@14#, who considered segregation in anAB mixture mediated
by a single vacancy. These authors discovered the surpri
result that domain growth mediated by a single vacancy
much faster than that for the usual direct-exchange mec
nism. Moreover, the asymptotic domain growth in the
study is consistent with the usual Lifshitz-Slyozov~LS!
growth law for phase separation in binary mixtures, vi
L(t);t1/3. Before we proceed, it is worth pointing out th
the Vives-Planes@12# and Fratzl-Penrose@14# models are in
the same static universality class as the usual two-state I
model for binary mixtures. This is because a single vaca
does not play a relevant role in the thermodynamic limit.

In this paper we formulate mean-field dynamical mod
for phase ordering in binary mixtures with mobile vacanci
We pursue two primary goals in this paper. The first is
provide a systematic phenomenological treatment of ph
ordering dynamics in ternary (ABV) mixtures, with vacan-
cies~denoted byV) acting as a third component in the mix
ture. Our second goal is to use these mean-field dynam
models to obtain detailed numerical results for the two pr
lems that we have discussed above. In recent work, P
and Gouyet@15# have used similar mean-field dynamic
models forABV mixtures to investigate surface instabilitie
for droplets of the unstable mixture immersed in a sta
vapor of the mixture.

This paper is organized as follows. In Sec. II, we pres
the model Hamiltonian for theABV system and its mean
field solution. We also formulate mean-field dynamical mo
els for vacancy-mediated phase separation and orderin
ferromagnets with vacancies. Section III contains detai
numerical results for the problem of vacancy-mediated ph
separation. In Sec. IV, we present numerical results for
dynamics of ordering in a ferromagnet with annealed vac
cies. Section V ends this paper with a summary and disc
sion of our results.

II. MEAN-FIELD DYNAMICAL MODELS
FOR PHASE ORDERING DYNAMICS WITH VACANCIES

Consider a lattice model in which each sitei can be oc-
cupied by either anA, a B, or a V ‘‘atom.’’ This model is
applicable to both ternary (ABV) mixtures and ferromagnet
with vacancies. In the latter context,A and B can be inter-
preted as up- and down-spin states, respectively. We ass
that there is only a nearest-neighbor interaction and the
ergies associated withA-A, B-B, and A-B pairs areeAA ,
eBB , andeAB , respectively@14~a!#. We further assume tha
there is no interaction energy for pairs with at least oneV
atom. Then we can write the energy of the system in term
a spin-1 model with the Hamiltonian
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H5
eAA1eBB22eAB

4 (̂
i j &

SiSj1
eAA2eBB

4 (̂
i j &

~Si
2Sj1SiSj

2!

1
eAA1eBB12eAB

4 (̂
i j &

Si
2Sj

2 , ~3!

whereSi51, 0, or21 corresponds to anA, aV, or aB atom
at sitei , respectively. We consider the caseeAA5eBB52e,
so that there is an attractive interaction between ident
atoms. Then our Hamiltonian reduces to

H52J(̂
i j &

SiSj1K(̂
i j &

Si
2Sj

2 , ~4!

whereJ5(e1eAB)/2 andK5(eAB2e)/2. The Hamiltonian
in Eq. ~4! is a special case of the well-known Blume-Emer
Griffiths ~BEG! model @19# and is known to exhibit a rich
phase diagram. In general, the BEG Hamiltonian should a
include terms involving fields that couple linearly withSi

~viz., 2h( iSi) andSi
2 ~viz., 2D( iSi

2). We will investigate
the dynamics of phase ordering in this model.

The mean-field solution for the model in Eq.~4! ~at tem-
peratureT) is easily obtained@20# as

^Sk&
s5^Sk

2&s tanhF J

T(
Lk

^SLk
&sG ,

^Sk
2&s5

2 coshF J

T(
Lk

^SLk
&sG

2 coshF J

T(
Lk

^SLk
&sG1expFK

T(
Lk

^SLk

2 &sG , ~5!

whereLk refers to the neighbors of sitek and we have set the
Boltzmann constant to unity. Nonzero external fieldsh and
D are trivially incorporated in Eq.~5!. In Eq. ~5! we use the
superscripts to label the static solution. There are two ord
parameters, viz.,̂ Sk&

s, which refers to theAB field, and
^Sk

2&s ~or 12^Sk
2&s), which refers to the vacancy field. Thes

order parameters are not independent of each other.
static, homogeneous solutions of Eq.~5! arise from

S* 5

2sinhFqJ

T
S* G

2 coshFqJ

T
S* G1expFqK

T
P* G ,

P* 5

2 coshFqJ

T
S* G

2 coshFqJ

T
S* G1expFqK

T
P* G , ~6!

whereS* 5^S&, P* 5^S2&, andq is the number of neares
neighbors of a site.

In our discussion below, we focus on the caseK50 ~i.e.,
eAB52eAA52eBB), which corresponds to the spin-1 Isin
model, as this simplifies our calculations considerably.
al

o

r

he

f

course, the approach we formulate below generalizes to
KÞ0 case in a straightforward fashion and we will al
present models forKÞ0.

For the caseK50, the only solution of Eq.~6! for T
.Tc (52qJ/3) is S* 50, P* 52/3, corresponding to the
disordered state. ForT,Tc , an ordered solution withS*
Þ0 emerges, corresponding to a separation intoA- and
B-rich regions. The introduction of nonzeroK and fieldsh,D
considerably enriches the phase diagram@19#. We do not go
into the details of the complete phase diagram here but
merely use relevant information wherever necessary.

A. Vacancy-mediated segregation in theABV model

We first consider the physically relevant situation whe
the microscopic stochastic dynamics associated with
ABV Hamiltonian consists of nearest-neighbor spin e
changes, but only betweenA-V (1↔0) and B-V
(21↔0). We do not permit energetically unrealisticA-B
~Kawasaki! exchanges. The master equation that descri
this stochastic dynamics for a system ofN spins is

]

]t
P~S1 ,...,Si ,SLi

,...,SN ;t !

52(
i

(
Li

W~Si↔SLi
!@11SiSLi

#

3P~S1 ,...,Si ,SLi
,...,SN ;t !

1(
i

(
Li

W~SLi
↔Si !@11SiSLi

#

3P~S1 ,...,SLi
,Si ,...,SN ;t !. ~7!

In Eq. ~7!, P(S1 ,...,Si ,...,SN ;t) is the time-dependen
probability distribution for a spin configuration$Si%. The
first term on the right-hand side corresponds to transiti
out of the spin configuration$Si% via spin exchanges
Si↔SLi

. The factor@11SiSLi
# enforces the constraint tha

only transitions of the type61↔0 are permitted. The func
tional form of the transition probability is chosen to be co
sistent with the detailed balance condition, viz.,

W~Si↔Sj !5
1

2t1
F12tanhS DH~Si↔Sj !

2T D G , ~8!

where we associate a time scale oft1 with a spin-exchange
process andDH(Si↔Sj ) is the change in energy associat
with the microscopic process. For simplicity of presentatio
we initially confine ourselves to the caseK50 and later
present results forKÞ0. Then we have

DH~Si↔Sj !5J (
LiÞ j

~Si2Sj !SLi
2J (

L jÞ i
~Si2Sj !SL j

.

~9!

We multiply both sides of the master equation bySk and
perform a configuration average to obtain~after some alge-
bra!
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t1

]^Sk&
]t

52(
Lk

^Sk~12SLk

2 !2SLk
~12Sk

2!&1(
Lk

K @11SkSLk
#~Sk2SLk

!2 tanhF J

2T S (
Lk

SLk
2(

LLk

SLLk
D G L

52q^Sk&1(
Lk

^SLk
&2(

Lk

^Sk
2SLk

2SkSLk

2 &1(
Lk

K ~Sk
21SLk

2 22Sk
2SLk

2 !tanhF J

2T S (
Lk

SLk
2(

LLk

SLLk
D G L .

~10!

So far, we have made no simplifying approximations and our dynamical equations are exact within the framework
model. Equation~10! is part of an infinite hierarchy of coupled equations, which are intractable. It is customary to simplif
exact~but intractable! system of equations by invoking a mean-field~MF! approximation, which yields

t1

]^Sk&
]t

52q^Sk&1(
Lk

^SLk
&2(

Lk

~^Sk
2&^SLk

&2^Sk&^SLk

2 &!1(
Lk

~^Sk
2&1^SLk

2 &22^Sk
2&^SLk

2 &!

3tanhF J

2T S (
Lk

^SLk
&2(

LLk

^SLLk
& D G . ~11!

In similar fashion, we can obtain a dynamical equation for^Sk
2& by multiplying the master equation withSk

2 and configu-
ration averaging to obtain~again after some algebra!

t1

]^Sk
2&

]t
52(

Lk

^~Sk
22SLk

2 !~11SkSLk
!&1(

Lk
K @11SkSLk

#~Sk
22SLk

2 !~Sk2SLk
!tanhF J

2T S (
Lk

SLk
2(

LLk

SLLk
D G L . ~12!

Now notice that

~Sk
22SLk

2 !~11SkSLk
!5Sk

22SLk

2 ,
~13!

@11SkSLk
#~Sk

22SLk

2 !~Sk2SLk
!5Sk1SLk

2Sk
2SLk

2SkSLk

2 ,

where we have used the fact thatSk
35Sk . Then Eq.~12! simplifies to

t1

]^Sk
2&

]t
52q^Sk

2&1(
Lk

^SLk

2 &1(
Lk

K ~Sk1SLk
2Sk

2SLk
2SkSLk

2 !tanhF J

2T S (
Lk

SLk
2(

LLk

SLLk
D G L . ~14!

Finally, we invoke the MF approximation to obtain the required dynamical equation

t1

]^Sk
2&

]t
52q^Sk

2&1(
Lk

^SLk

2 &1(
Lk

~^Sk&1^SLk
&2^Sk&^SLk

2 &2^Sk
2&^SLk

&!tanhF J

2T S (
Lk

^SLk
&2(

LLk

^SLLk
& D G . ~15!

Equations~11! and~15! constitute our MF dynamical model for phase separation mediated by vacancies. It is easy to c
that the spatial integrals of both order parameters are conserved. Furthermore, if we start off with an initial condition i
there are no vacancies~i.e., ^Sk

2&51 everywhere! or all vacancies~i.e., ^Sk&5^Sk
2&50 everywhere!, there is no dynamics at al

and Eqs.~11! and ~15! trivially reduce to

t1

]^Sk
n&

]t
50, n51,2. ~16!

We can retrace the steps in our calculation above to obtain the appropriate MF dynamical model forKÞ0. This model takes
the form

t1

]^Sk&
]t

52q^Sk&1(
Lk

^SLk
&2(

Lk

~^Sk
2&^SLk

&2^Sk&^SLk

2 &!1
1

2 (
n51,2

~21!n(
Lk

@^Sk&1^SLk
&1~21!n^Sk

2&1~21!n^SLk

2 &

2^Sk
2&^SLk

&2^Sk&^SLk

2 &2~21!n2^Sk
2&^SLk

2 &#tanhF J

2T S (
Lk

^SLk
&2(

LLk

^SLLk
& D

2~21!n
K

2T S (
Lk

^SLk

2 &2(
LLk

^SLLk

2 & D G ~17!
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and

t1

]^Sk
2&

]t
52q^Sk

2&1(
Lk

^SLk

2 &1
1

2 (
n51,2

(
Lk

@^Sk&1^SLk
&1~21!n^Sk

2&1~21!n^SLk

2 &2^Sk
2&^SLk

&2^Sk&^SLk

2 &2~21!n2^Sk
2&

3^SLk

2 &#tanhF J

2T S (
Lk

^SLk
&2(

LLk

^SLLk
& D 2~21!n

K

2T S (
Lk

^SLk

2 &2(
LLk

^SLLk

2 & D G . ~18!

Finally, for completeness, we also present the mean-field dynamical model that arises for the corresponding nonc
dynamics. In the nonconserved case, we only allow spontaneous transitions of the spin variableSi from 61→0 ~or vice versa!
on a time scalet2. Of course, theSi50 state in this model can no longer be associated with vacancies as the num
vacancies must be conserved. The appropriate mean-field dynamical model for the nonconserved case is

2t2

]^Sk&
]t

52^Sk&1 (
n51,2

S 21~21!n^Sk&2^Sk
2&

2 D tanhF J

2T(
Lk

^SLk
&2~21!n

K

2T(
Lk

^SLk

2 &G ~19!

and

2t2

]^Sk
2&

]t
5223^Sk

2&1 (
n51,2

~21!nS 21~21!n^Sk&2^Sk
2&

2 D tanhF J

2T(
Lk

^SLk
&2~21!n

K

2T(
Lk

^SLk

2 &G . ~20!
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We can demonstrate by direct substitution that the st
solutions in Eq.~5! are explicitly contained in Eqs.~17!–
~20!. The algebra is straightforward, though somewhat
volved, and we do not present it here. Furthermore, we
also obtain coupled nonlinear partial differential equatio
equivalent to our MF dynamical models by identifying th

order parameterŝSk&[c(rW,t) and^Sk
2&[f(rW,t). We do not

present these equations here as the numerical results rep
later are obtained by directly simulating the MF dynamic
models presented above.

Before we proceed to the next section, we would like
discuss the nature of our modeling via MF dynamical mo
els. Our models are macroscopic-level descriptions of
microscopic dynamical models that were our starting po
The transition to a coarse-grained level of description is
plicit in the configuration averaging in conjunction with th
MF approximation. Nevertheless, we expect our mac
scopic models to be in the same dynamical universality c
as the underlying microscopic models. Furthermore, a
consequence of the smoothening inherent in our coa
graining procedure, we expect our macroscopic models
constitute a far more reliable and convenient means of
cessing the asymptotic behavior of phase ordering dynam
especially in the COP case. It is well known that, in spite
extensive numerical efforts, MC models of phase separa
in pure binary mixtures@21# are still unable to access the tru
asymptotic regime in which the characteristic domain s
obeys the LS growth lawL(t);t1/3. On the other hand, a
least for pure binary mixtures, the asymptotic behavior
easily accessed using phenomenological cell dynamical
tem models@22,23# and MF dynamical models@11~b!# of the
kind discussed here.

The second point we wish to address concerns the de
ministic nature of our models. We can incorporate the effe
of thermal fluctuations in our deterministic models a
thereby obtain mesoscopic-level models@24#. However, in
the pure case, thermal noise has been demonstrated
ic
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asymptotically irrelevant@5#. Physically, this is a conse
quence of the fact that thermal noise affects interfaces o
fixed length scale, which becomes progressively irrelevan
comparison to the growing domain length scales. We exp
a similar argument to apply here also. Thus it is reasona
and convenient to work with deterministic models, at leas
the context of late-stage behavior.

B. Ordering of ferromagnets with annealed vacancies

We next consider the phase ordering dynamics of fer
magnets with annealed vacancies. In this case, there are
mechanisms whereby the system evolves, i.e.,~a! micro-
scopic spin-flip processes, withSi flipping from 1→21 and
vice versa, and~b! exchange of spins (Si561) with vacan-
cies, as in the preceding subsection. We have already for
lated a mean-field dynamical model for the conserved
namics of~b! in the preceding subsection. We now spec
the model corresponding to the nonconserved process of~a!.
The spins with value 0~representing vacancies! do not play a
role in the nonconserved dynamics but act as trapping s
for coarsening domains. Therefore, the impurity field^Sk

2&
has no dynamical evolution in the context of spin-flip pr
cesses and merely plays the role of quenched disorder.

The master equation that describes spin-flip dynamics
a system ofN spins is

]

]t
P~S1 ,...,Si ,...,SN ;t !

52(
i

W~Si→2Si !P~S1 ,...,Si ,...,SN ;t !

1(
i

W~2Si→Si !P~S1 ,...,2Si ,...,SN ;t !,

~21!
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where the various quantities have the same meaning as
fore. The transition probabilityW(Si→2Si) has the usua
form

W~Si→2Si !5
1

2t3
S 12tanhFDH~Si→2Si !

2T G D , ~22!

wheret3 is a characteristic time scale for the spin-flip pr
cess. In this case we have

DH~Si→2Si !52JSi(
Li

SLi
, ~23!

which is valid for arbitraryK. This is because the vacancie
are unaffected by the microscopic dynamics and the sec
term in theABV Hamiltonian stays unchanged.

We next multiply both sides of the master equation bySk
and perform a configurational average to obtain

t3

]^Sk&
]t

52^Sk&1K Sk
2 tanhF J

T(
Lk

SLkG L . ~24!

Finally, we invoke the MF approximation to obtain the d
namical model

t3

]^Sk&
]t

52^Sk&1^Sk
2&tanhF J

T(
Lk

^SLk
&G . ~25!

It is easy to verify that

t3

]^Sk
2&

]t
50, ~26!

as is apparent from the microscopic dynamics. It is also
vious that Eq.~25! contains the static solution for^Sk& from
Eq. ~5!.

It is instructive to identify the order parameter field

^Sk&[c(rW,t) and^Sk
2&[f(rW) in Eq. ~25!. We Taylor expand

terms in the argument of the tanh function and then perfo
a small-argument expansion of the tanh function. This p
cedure yields the nonlinear partial differential equati
equivalent to Eq.~25!,

t3

]c~rW,t !

]t
5FqJ

T
f~rW !21Gc~rW,t !2

1

3S qJ

T D 3

f~rW !c~rW,t !3

1
Ja2

T
f~rW !¹2c~rW,t !, ~27!

wherea is the lattice spacing. Thus quenched vacancies~im-
purities! have the effect of randomizing the coefficients
the TDGL equation for the nonconserved case@25,8#. The
desired mean-field dynamical model for ordering in fer
magnets with vacancies is obtained by combining terms
Eqs.~25! and ~26! with terms in Eqs.~17! and ~18!, respec-
tively.

Finally, for completeness, we consider the case wherA
and B are allowed to interchange~i.e., Kawasaki kinetics!
and the vacancies or impurities act as quenched disorder.
resultant mean-field dynamical model is
e-

nd

-

m
-

-
in

he

t4

]^Sk&
]t

5(
Lk

~^Sk
2&^SLk

&2^Sk&^SLk

2 &!2(
Lk

~^Sk&^SLk
&

2^Sk
2&^SLk

2 &!tanhF J

T S (
Lk

^SLk
&2(

LLk

^SLLk
& D G
~28!

and

t4

]^Sk
2&

]t
50, ~29!

wheret4 is the time scale of the microscopic dynamics. It
again obvious that the static solution from Eq.~5! is con-
tained in Eq.~28!. We can also coarse grain further to obta
the nonlinear partial differential equation corresponding
Eq. ~28!. At the phenomenological level, this is simply ob
tained by appending an extra2¹2 operator to the chemica
potential in Eq.~27! @8#.

We will next present numerical results obtained fro
simulations of these models. In particular, Sec. III conta
results from a simulation of phase separation mediated
vacancies. Section IV presents results from a simulation
ordering dynamics in a ferromagnet with annealed vacanc
In both cases, we directly simulate the appropriate MF
namical models as these provide a convenient alternativ
the partial differential equation models.

III. NUMERICAL RESULTS FOR VACANCY-MEDIATED
PHASE SEPARATION

Our numerical results for vacancy-mediated phase sep
tion were obtained using the MF dynamical models in E
~11! and ~15! ~i.e., for K50), with t1 scaled into the time
variable. We simulated these coupled equations in two
mensions on a lattice of sizeN2 using a simple Euler dis-
cretization scheme with mesh sizeDt50.01. Periodic bound-
ary conditions were applied in both directions. We confirm
that further reduction of the mesh size did not change
numerical results. The parameter values for our simulat
were K50 and T50.375Tc . Results similar to those pre
sented here are obtained for a wide range of tempera
values with the only change being in the coefficients
growth laws.

The initial conditions for thêSk& and^Sk
2& fields in each

run were chosen to be uniformly distributed random fluctu
tions about some background and mimicked the disorde
homogeneous state before the quench. The background v
was 0 for thê Sk& field, corresponding to an equal mix ofA
andB atoms. For thêSk

2& field, we considered backgroun
values v050.93 and 0.96, corresponding to a rather hi
concentration of vacancies. We used these high concen
tions as we were interested in investigating nonuniversal
fects and/or different late-stage dynamics which may re
because of the presence of vacancies.

We studied phase ordering in theABV model using three
tools: evolution pictures and order parameter profiles,
time-dependent structure factor for theAB field, and charac-
teristic domain length scales. The time-dependent struc
factor S(kW ,t) for the AB field is defined as
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S~kW ,t !5^c~kW ,t !c~kW ,t !* &, ~30!

where c(kW ,t) is the discrete Fourier transform of theAB

field (^Sk&) with wave vectorkW and timet. In our discrete
simulation, the wave vectors take valueskW
5 (2p/N) (nx ,ny), wherenx and ny range from2N/2 to
N/221. The angular brackets in Eq.~30! refer to an averag-
ing over independent initial conditions. In our simulatio
reported here, the structure factor is calculated for system
size 2562 as an average over 50 independent runs. As
have remarked earlier, an interesting aspect of phase o
ing systems is the dynamical scaling of the time-depend
structure factor, i.e., the morphology of coarsening doma
is unchanged in time. The dynamical scaling form of t
structure factor for isotropic systems is

S~kW ,t !5L~ t !dF„kL~ t !…, ~31!

where d is the dimensionality andF(x) is a time-
independent master function. In our simulations, we sph
cally average the structure factorS(kW ,t) to obtain the scalar
structure factorS(k,t), which we will present subsequently

We define the characteristic length scaleL(t) as the re-
ciprocal of the first moment of the spherically averag
structure factor, i.e.,L(t)5^k&21, where

^k&5

E
0

km
dk k S~k,t !

E
0

km
dk S~k,t !

. ~32!

In Eq. ~32!, the upper cutoffkm is taken as being half the
magnitude of the largest wave vector lying in the Brillou
zone of our discrete lattice. We have confirmed that
structure factor has decayed sufficiently by this value so
a further increase inkm does not affect the value of^k&. The
characteristic length scale can be defined in a numbe
ways, all of which are equivalent in the dynamical scali
regime@2#.

Figure 1 shows an evolution picture obtained from o
MF dynamical model for vacancy-mediated phase sep
tion, implemented on a 1282 lattice. The initial condition is
as described above and the background vacancy field iv0
50.93. Regions wherêSk& is positive ~say, A rich! are
marked in black and those where^Sk& is negative~B rich!
are not marked. We interpret regions where^Sk

2& falls below
0.7 as being vacancy-rich and these are marked by cro
There are two important features that emerge from these
tures. Firstly, vacancy-mediated segregation dynamics g
rise to a morphology that is similar to that obtained from t
usual Kawasaki exchange in pureAB mixtures. Second, va
cancies rapidly migrate to the interfacial regions as this
energetically favorable.

The static solutions for the phase separation problem~i.e.,
with fixed concentrations ofA, B, and V) in the caseK
50 correspond to two-phase coexistence, i.e., in equ
rium, there areA-rich andB-rich phases with a uniform va
cancy fieldv0, which is the same as that in the initial cond
of
e
er-
nt
s

i-

e
at
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r
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es.
ic-
es

is

-

tion. The deviations fromv0 in the interfacial regions are
irrelevant in the thermodynamic limit.

However, there is a range of values ofK where the model
also exhibits three-phase coexistence, with the third ph
corresponding to aV-rich phase. In this situation, the thick
ness of the vacancy layer at the interface increases with
because the overall interfacial area is diminished as the
mains coarsen. This makes the surface tension time de
dent and results in a slowing down~and possibly freezing! of
domain growth. Similar effects are seen in the case of bin
mixtures with surfactants@11#. We are presently investigat
ing the dynamical evolution of the phase separating sys
in this parameter regime in greater detail.

Figure 2 shows the variation of the order-parameter fie
along a specified cross section in the evolution pictures
Fig. 1. The cross section is parallel to the horizontal axis a
midway up the vertical axis. The solid and dashed lines re
to the fields^Sk& and ^Sk

2&, respectively. It is evident from
Fig. 2 that the vacancy concentration is maximum in theAB
interfacial regions. Similar pictures are obtained forv0
50.96 also and were presented in an earlier paper@16#.

FIG. 1. Temporal evolution from a disordered initial conditio
for our mean-field dynamical model of vacancy-mediated ph
separation in theABV model withK50. These pictures were ob
tained from a simple Euler discretization~with mesh sizeDt
50.01) of Eqs.~11! and ~15! ~with t1 absorbed into the definition
of time t) on a two-dimensional lattice of size 1282. Periodic
boundary conditions were imposed in both directions. The par
eter value for this simulation wasT50.375Tc . The initial condition
for the ^Sk& ~or AB! field consists of uniformly distributed small
amplitude fluctuations about a zero background, mimicking a
mogeneous state. The initial condition for the^Sk

2& ~or vacancy!
field consists of similar fluctuations about a backgroundv050.93.
Regions with positivê Sk& are marked in black and regions wit
negative^Sk& are not marked. Regions where^Sk

2& falls below 0.7
~i.e., vacancy rich! are marked as crosses and are confined to
interfacial regions, as is clear from the pictures. The dimension
evolution times are specified above each frame.



d-
-
llel
of

e

1880 57SANJAY PURI AND RADHIKA SHARMA
FIG. 2. Order parameter profiles correspon
ing to the evolution depicted in Fig. 1. The pro
files are measured along a cross section para
to the horizontal axis and located at the middle
the vertical axis. The solid line refers to the^Sk&
~or AB! field and the dashed line refers to th
^Sk

2& ~or V) field.
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Figure 3 tests the dynamical scaling of the time-depend
structure factor for the temporal evolution depicted in Fig.
Figure 3~a! superposes data forS(k,t)^k&2 vs k/^k& from
dimensionless times 1600, 4800, 6400, and 8000. The
from different times collapses onto a master curve reas
ably well, except in the peak region, where there is still so
drift. Figure 3~b! plots the data of Fig. 3~a! on a log-log scale
and shows that the data collapse is good in the intermed
tail region also. The extreme tail region shows a slow u
ward drift, which we would like to discuss at some leng
here. In the pure case, where there are no vacancies,
known that the finite interfacial thicknesssW gives rise to
nonuniversal effects in the tail@26#. As the domain sizeL(t)
increases,sW /L(t)→0 and the nonuniversal effects a
pushed out to higher and higher values of the scaled w
vector k/^k&. On the scaled plot analogous to Fig. 3~b! for
the pure case, this is manifested as a marked upward dr
the tail of the structure factor. Asymptotically in time, th
structure factor for the pure case exhibits the Porod
@S(k,t);k2(d11) for largek], which is associated with scat
tering off sharp interfaces@27#.

In the present case, our data show only a weak upw
drift in the tail. A possible reason for this is the extrem
softness of vacancy-rich interfaces compared to interface
the pure case. Furthermore, as we will see later, dom
growth is considerably slower in the vacancy-driven ca
Nevertheless, even in the present case, we expect to rec
Porod’s law at sufficiently long times because the interfac
thickness does not grow with time. However, in the physi
situation where we have a macroscopic vacancy-rich la
growing at the interface, the effective interface width is tim
dependent. From simple geometric considerations, we
that the thickness of the vacancy layer is proportional
L(t). If we make the reasonable assumption that the inte
cial thicknesssW(t) grows at the same rate as the thickne
of the vacancy layer,sW(t)/L(t).const. In such a situation
we would not expect to recover Porod’s law even asympt
cally in time.

Figure 4~a! compares the scaled structure factor for t
nt
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pure case with spin-exchange dynamics and those
vacancy-mediated spinodal decomposition withv050.93
and 0.96. Data for the pure case are obtained from a t
dimensional simulation of a MF dynamical model similar
that described previously. The parameter value for our sim
lation of the pure case isT50.75Tc , whereTc is the MF
critical temperature of the Ising model. The scaled struct
factors are in reasonable agreement, but appear to be slig
offset from each other. This is a possible consequence of
slow approach to asymptotic behavior in vacancy-media
segregation dynamics. As a matter of fact, the scaled data
the case withv050.93, corresponding to a higher vacan
concentration and faster domain growth, is somewhat clo
to the pure case than the data forv050.96. Figure 4~b! is a
log-log plot of the data in Fig. 4~a! and highlights the differ-
ence between the scaled structure factors for the pure
and the vacancy-driven case. The characteristic shoulde
the scaled structure factor for the pure case atk/^k&.2.0
appears to be absent in the vacancy-driven case. The ext
tail for the pure case also lies below the tails for the vacan
driven case. However, with the passage of time, the extre
tails in all cases will rise and asymptotically approach t
Porod tail@marked as a dashed line in Fig. 4~b!#.

Finally, Fig. 5 studies the time dependence of the char
teristic domain sizeL(t)5^k&21. Figure 5~a! plotsL(t) vs t
for the pure case~up to t54000) and the vacancy-drive
cases withv050.93 and 0.96~up to t58000). We have used
a nonlinear fitting routine to fit the length scale data to t
functional formL(t)5a1btf and the resultant best fits ar
denoted as solid lines on the data sets. The best-fit gro
exponents aref50.3360.01 for the pure case,f50.34
60.01 forv050.93, andf50.3260.01 forv050.96. These
are in excellent agreement with the LS growth lawL(t);a
1bt1/3. Figure 5~b! is a log-log plot of the data from Fig
5~a! for the vacancy-driven cases. In this case, we fit the d
by a straight line and the best-fit lines are superposed on
appropriate data sets. The slopes correspond tof50.33
60.01 forv050.93 andf50.3260.01 forv050.96.
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For parameter values that give rise to three-phase coe
ence, the vacancy layer at the interface grows with the p
sage of time and theAB interfacial tension diminishes dras
tically. The time dependence of the interfacial tension res
in considerably slower growth at late times@11# and we are
presently studying this in greater detail.

IV. NUMERICAL RESULTS FOR ORDERING
IN FERROMAGNETS WITH VACANCIES

We next consider the ordering of a ferromagnet with a
nealed vacancies. In the terminology of theABV model, we
permit spin flips from 1→21 and vice versa with a time
scalet3, as modeled by Eqs.~25! and ~26!. In conjunction
with these spin flips, we consider spin exchanges61↔0, so
that a magnetic atom can move into a vacant site. We a
ciate a time scalet1 with the spin-exchange process and u
the appropriate model in Eqs.~11! and~15!, i.e., we focus on
the K50 case again. The overall model has one nonc
served and one conserved order parameter. The dynami
the NCOP field̂ Sk& is described by a combination of Eq
~11! and ~25! and the dynamics of the COP field̂Sk

2& is
modeled by Eq.~15!. For convenience, we rescale the tim

FIG. 3. ~a! Scaled structure factorsS(k,t)^k&2 vs k/^k& for the
evolution depicted in Fig. 1. The structure factors are obtained
systems of size 2562 as an average over 50 independent runs.
superpose data from dimensionless times 1600, 4800, 6400,
8000 in the figure.~b! Data from~a!, plotted on a log-log scale. Th
dashed line has a slope of23 and refers to the two-dimensiona
~2D! Porod tail@i.e., S(k,t);k23 for large k in two dimensions#,
which characterizes scattering off sharp interfaces.
st-
s-

ts

-

o-
e

-
of

scalet3, which characterizes spin flips, into the time va
able.

We simulate this MF dynamical model on a two
dimensional lattice of sizeN2. The details of the simulation
and calculated quantities are the same as in Sec. III. The
additional parameter we have here is the ratiot3 /t1 , which
we set equal to 0.25, so that the frequency of spin exchan
is a quarter of the frequency of spin flips. Because of
rapid domain growth in the case with nonconserved or
parameter, we use considerably larger systems here so
avoid finite-size effects. Thus structure factors and charac
istic length scales are computed for systems of size 5122 as
an average over 50 independent runs.

Figure 6 shows evolution pictures for ordering in our M
dynamical model of ferromagnets with annealed vacanc
The vacancy background field isv050.93 and the system
size is 2562. As before, regions with positivêSk& ~i.e., rich
in A or up spins! are marked in black and regions with neg
tive ^Sk& ~i.e., rich in B or down spins! are unmarked. Fur-
thermore, regions wherêSk

2& falls below 0.7~defined as be-
ing vacancy rich! are marked by crosses. As in the conserv
case, vacancies migrate to the interfacial regions because

n
e
nd

FIG. 4. ~a! Comparison of scaled structure factors for the pu
case ~denoted bys ’s! and the vacancy-driven cases withv0

50.93 ~denoted byh’s! andv050.96 ~denoted byn ’s!. The data
for the pure case is obtained using statistics similar to that for
vacancy-driven cases. Data for the pure case are from dimens
less time 4000 and for the vacancy-driven cases from dimension
time 8000.~b! Data from~a!, plotted on a log-log scale. Symbol
have the same meaning as in~a!. The dashed line refers to the 2D
Porod tail, as in Fig. 3~b!.
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is energetically favorable. Figure 7 shows the variation of
order-parameter fields along a horizontal cross section of
evolution pictures in Fig. 6. The solid and dashed lines re
to the ^Sk& and ^Sk

2& fields, respectively. Figure 7 demon
strates clearly that there is a surfeit of vacancies in the in
facial regions, as is expected.

Figure 8~a! plots the scaled structure factorS(k,t)^k&2 vs
k/^k& for dimensionless times 400, 600, 800, and 1000.
call that these data are obtained on 5122 systems to avoid the
possibility of finite-size effects at later times. The quality
scaling is reasonable. Figure 8~b! plots the data of Fig. 8~a!
on a log-log scale and demonstrates that the scaling ext
into the intermediate tail region. Again, there is an upwa
drift of the extreme tail, but at a very slow rate. As discuss
earlier, this is a possible consequence of the extreme soft
of the interfaces resulting from the deposition of vacanci

Figure 9~a! compares the scaled structure factors for
pure case and the vacancy-affected case withv050.93 and
0.96. The agreement is not particularly good, with the sca

FIG. 5. ~a! Characteristic length scaleL(t) vs t for the pure case
~denoted bys ’s! and the vacancy-driven cases withv050.93 ~de-
noted byh’s! andv050.96 ~denoted byn ’s!. We use a nonlinear
fitting routine to fit data to the formL(t)5a1btf. The best-fit lines
are superposed on the appropriate data sets and the correspo
exponents are as follows: pure case (f50.3360.01), v050.93
(f50.3460.01), andv050.96 (f50.3360.01).~b! Length scale
data for vacancy-driven segregation from~a!, plotted on a log-log
scale. Symbols have the same meaning as in~a!. We have fitted the
data to straight lines and these are depicted on the appropriate
sets. The slopes for the best-fit lines are as follows:v050.93 (f
50.3360.01) andv050.96 (f50.3260.01).
e
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structure factor for the pure case exhibiting a sharper fal
than that for the case with vacancies. This difference is hi
lighted in the log-log plot of Fig. 9~b!. Furthermore, scaled
structure factors do not agree in the extreme tail regions a
For the pure case, the scaled structure factor has alm
reached its asymptotic form in that it exhibits a Porod t
over a large region. However, the extreme tail for the ca
with vacancies differs substantially from the Porod tail
the time scales considered.

Finally, Fig. 10 plots the characteristic domain sizeL(t)
vs t for the pure case and the vacancy-affected case w
v050.93 and 0.96. We have attempted to fit our data to
power-law formL(t)5a1btf using a nonlinear fitting rou-
tine. The resultant best fits are denoted by solid lines on
appropriate data sets and the best-fit exponents are spe
in the figure caption. These exponents are consistent with
Lifshitz-Cahn-Allen growth lawL(t);a1bt1/2, which char-
acterizes domain growth in the pure case.

V. SUMMARY AND DISCUSSION

Let us end with a brief summary and discussion of o
results in this paper. We initiated this study with two goals
mind. First, we wanted to formulate a coherent phenome
logical framework to investigate phase ordering dynamics
ternary mixtures. Monte Carlo models, though relative
easy to formulate, are not particularly useful for investigati
the asymptotic behavior of phase ordering dynamics, es
cially in cases where the ordering field is described by
conserved order parameter. On the other hand, phenom

ding

ata

FIG. 6. Temporal evolution from a disordered initial conditio
for our mean-field dynamical model of ordering in a ferromagn
with annealed vacancies. This model~with K50) is obtained by
combining Eq.~11! with Eq. ~25! and Eq.~15! with Eq. ~26!. The
other parameter values areT50.75Tc andt3 /t150.25. The simu-
lation details and our graphic representation are the same as in
1, except that the system size in this case is 2562.
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FIG. 7. Order parameter profiles correspon
ing to the evolution depicted in Fig. 6. The cros
section is the same as that in Fig. 2. The so
lines and dashed lines refer to the^Sk& and ^Sk

2&
fields, respectively.
o
hi
, a
ne

-
less

e
d

FIG. 8. ~a! Scaled structure factorsS(k,t)^k&2 vs k/^k& for the
evolution depicted in Fig. 6. Structure factor data are obtained
systems of size 5122 as an average over 50 independent runs. T
figure superposes data from dimensionless times 400, 600, 800
1000.~b! Data from~a!, plotted on a log-log scale. The dashed li
refers to the 2D Porod tail, as in Fig. 3~b!.
n
s
nd

FIG. 9. ~a! Analogous to Fig. 4~a!, but for the case of ferromag
nets with annealed vacancies. All data sets are from dimension
time 1000. Data for the pure case are denoted bys ’s and for the
vacancy-affected cases byh’s ~for v050.93) andn ’s ~for v0

50.96).~b! Data from~a!, plotted on a log-log scale. Symbols hav
the same meaning as in~a!. The dashed line refers to the 2D Poro
tail.
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1884 57SANJAY PURI AND RADHIKA SHARMA
logical models have been highly successful in elaborating
asymptotic behavior of phase ordering dynamics, at leas
the pure case. It is thus reasonable to expect that the s
would also be true for more complicated problems.

We model ternary phase ordering mixtures by anABV
lattice model, whereA andB refer to components of a binar
alloy in the case with a conserved order parameter, or up
down spins in the case with a nonconserved order param
The componentV refers to a conserved vacancy field. Th
ABV model can be rewritten in terms of a spin-1 model w
the statesSi51, 0, and21 corresponding toA, V, andB,
respectively. We associate kinetics with this model and
tain MF dynamical models using a methodology based
the master equation@6#. In all, we consider four differen
situations that correspond to~a! conserved kinetics in which
61↔0, ~b! nonconserved kinetics in which61→0 and
vice versa,~c! nonconserved kinetics in which11→21 and
vice versa, and~d! conserved kinetics in which11↔21.

The resultant MF models are dynamical equations for
order parameterŝSk& and ^Sk

2&, which describe theAB and
V fields, respectively. They all contain the correct MF sta
solution, which is an important check on their reasonab
ness. Various physical problems involvingABV mixtures
can be investigated as combinations of models~a!–~d!
above. Furthermore, though we considered only specific
teractions that were of relevance to our present study
should be apparent that our methodology easily extend
the case of ternary mixtures with more general interactio

We should stress that the approach based on the m
equation does not constitute a rigorous derivation of th
MF dynamical models. Rather, they are best viewed as p
nomenological models and the master equation approac
merely a means of motivating a reasonable phenomeno
cal model. As with all good phenomenology, the true test
these models lies in a comparison with experimental res
and numerical results from microscopic MC models.

FIG. 10. Analogous to Fig. 5~a!, but for the case of ferromag
nets with annealed vacancies. The nonlinear best-fit lines are s
posed on the appropriate data sets. The corresponding growt
ponents aref50.5160.01 ~for the pure case, denoted bys ’s!, f
50.5060.01 ~for v050.93, denoted byh’s!, and f50.5160.01
~for v050.96, denoted byn ’s!.
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Our second goal in this paper was to address two imp
tant phase ordering problems using these models. The
problem we considered was that of vacancy-mediated s
odal decomposition. Our numerical results for this and
subsequent problem were obtained in a parameter range
responding to two-phase coexistence. It is generally belie
that spinodal decomposition proceeds via vacancy-atom
changes@18# rather than the Kawasaki spin-exchange kin
ics customarily used to model phase separation. Our num
cal results demonstrate that vacancy-mediated spin
decomposition gives rise to domain growth characterized
a length scaleL(t), which obeys the Lifshitz-Slyozov growth
law L(t);t1/3 over the time scales of our simulation.

As far as the scaled structure factor is concern
vacancy-driven spinodal decomposition is characterized
approximately the same functional form as the usual K
wasaki kinetics. However, there are subtle points of diff
ence, especially in the tail regions. We believe that th
differences are nonuniversal effects due to extremely
vacancy-rich interfaces. We are presently studying this pr
lem in the physically relevant regime where theABV system
shows three-phase coexistence. In this situation, the p
separating system exhibits a time-dependent interfa
thickness due to the ongoing accretion of vacancies at
interface, resulting in a slowing down of the asymptotic d
main growth law. Furthermore, in this case, the Porod tai
not recovered even asymptotically because of the grow
interfacial width.

The second problem we considered was that of orde
in ferromagnets with annealed vacancies. Again, the res
are similar to those obtained for the conserved case. Thus
domain length scaleL(t) obeys the Lifshitz-Cahn-Allen law
L(t);t1/2 over the time scales of our simulation. As far
scaled structure factors are concerned, the functional f
for the pure case differs from that for the pure case w
vacancies. It is our belief that this is a consequence of str
nonuniversal features introduced by the time-dependent
terface thickness. Clearly, longer simulations of larger s
tems are required before we can make conclusive statem
about the apparent differences in the scaled structure fac

As we have remarked earlier, our modeling in this pap
can easily be extended to other ternary mixtures also. I
our hope that the results in this paper will facilitate inves
gation of the late-stage behavior of phase ordering tern
mixtures in general andABV models in particular.
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