PHYSICAL REVIEW E VOLUME 57, NUMBER 2 FEBRUARY 1998

Phase ordering dynamics in binary mixtures with annealed vacancies

Sanjay Pufi?®and Radhika Sharma
school of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
2Beckman Institute, 405 North Matthews Avenue, University of Illinois at Urb@hampaign, Urbana, lllinois 61801-3080
3Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, United Kingdom
(Received 27 November 1996; revised manuscript received 23 September 1997

We formulate mean-field dynamical models for phase ordering dynamics in binary mixtures with both
mobile and quenched vacancies or impurities. We use these models to obtain numerical results for two
important problems in phase ordering dynamics, viz., the kinetics of vacancy-mediated segregation and the
kinetics of ordering in a ferromagnet with annealed vacan¢®&5063-651X98)01102-7

PACS numbds): 64.70—p

I. INTRODUCTION is modeled by the time-dependent Ginzburg-Lan(DGL)
equation
Two-phase mixtures can exist in either a homogeneous . _
state(at high temperatureor an ordered stat@t low tem- A(r,t) SH[ (r,t)]
peratures where the system separates into domains rich in a 5¢(F,t) ' @

one or the other constituent of the mixture. When a two-
_phas_e_mixture in the ho_mogeneous state is quenched belq)%ere z//(F,t) is the order parametdspontaneous magneti-
its critical temperature, it evolves towards the ordered state =~ oo :
and the dynamics of this evolution is referred to as “phase?lion in the case of a ferromaghnat pointr and timet, and
ordering dynamics’[1]. The study of phase ordering dynam- H[#(r,t)] is an appropriate free-energy functional, usually
ics has evoked much research interest and there have bet@ken to be of thep* form. The case with a conserved order
many experimental, numerical, and analytical studies of thigarameter(COP) is modeled by the Cahn-HilliardCH)
problem[1]. For pure and isotropic systems, it is now well equation[4]
established that the coarsening domains exhibit a morpho- R .
logical self-similarity in time and are characterized by a IP(r,t) _y2 SHL¥(r,1)]
time-dependent length scalgt). This characteristic length a 5¢(F,t)
scale exhibits a power-law behavior in time, i.e(t)~t?,
wheret is the time andp is referred to as the growth expo- where conservation is imposed by associating an extra
nent. The functional form of the scaled structure factor,—V? operator with the chemical potential in Eq.). Ther-
which characterizes the domain morpholof], and the mal noise terms can also be introduced into Edjsand(2),
value of ¢ depend critically on whether or not the order but are not necessary as it has been demonstrated that the
parameter is conserved. effects of thermal noise are irrelevant for the asymptotic be-
Most numerical studies of phase ordering dynamics starhavior of phase orderinp]. Equationg1) and(2) should be
with microscopic models or their coarse-grained counterireated as purely phenomenological models and are not rig-
parts. At the microscopic level, the case with nonconservedrously derivable from microscopic models. However, they
order parametefe.g., the ordering of a ferromagnés stud-  can be motivated from appropriate microscopic modiets,
ied via Monte CarldMC) models, which associate Glauber the two-state Ising model with Glauber or Kawasaki kinet-
spin-flip kinetics with a two-state Ising model. In these mod-ics) via a master equation approach in conjunction with the
els, a spinS; at a sitei corresponds to an “up” or “down”  mean-field approximatiofg].
state and can be flipped at random because there is no con- At present, most well-established results for phase order-
straint on the order parameter, which is the local magnetizaing systems have been obtained in the context of pure and
tion. The case with conserved order paramésey., the seg- isotropic systems. Of course, real experimental systems are
regation of a binary alloyAB) is complicated by a neither pure nor isotropic. Recent interest in this area has
conservation constraint on the order parameter, which is thfscused on incorporating experimentally relevant effects into
local difference in densities ok andB atoms. Any reason- models of phase ordering dynamics. In particular, there have
able dynamical model must respect the fact that the numbeitseen a large number of studies of the effects of both
of A and B atoms are unchanged in time. This is usuallyquenched7-9] and annealed10-15 disorder on the dy-
mimicked at the microscopic level by associating Kawasaknamics of domain growth.
spin-exchange kinetick3] with a two-state Ising model. In Quenched impurities trap growing domains and drasti-
this case, the spin variablg describes whether a sifeis  cally alter the asymptotic domain growth law in a manner
occupied by arA or aB atom. that is not yet fully understoof¥,8]. However, the morphol-
At the phenomenological level, phase ordering dynamic®gy of coarsening domains is unaffected by the presence of
is usually modeled in terms of partial differential equations.quenched disordgother than in the case with random fields
Thus the case with a nonconserved order paranisigOP [9]) and the functional form of the scaled structure factor is
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independent of the amplitude of quenched disorder, a properucial factor in the dynamics of segregation. Vacancy-
erty that has been referred to as “superuniversal scaling.” mediated phase separation was studied by Yaldram and
Annealed impurities are relevant in two important classeBinder[14] via MC studies of a three-state spin model. Their
of systems, viz., binary mixtures with surfactaiésg., mi-  studies demonstrated that the vacancies tended to cluster in
croemulsions and binary mixtures with vacancies or impu- the interfacial regions. Furthermore, they found that the
rities. There have been a number of studies of phase orderirgualitative behavior of vacancy-mediated segregation is
in binary mixtures with surfactan{40,11. There is a good similar to that for the usual direct-exchange mechanism.
understandingat least numericallyof the functional form of However, they did not make a quantitative comparison and
the scaled structure factor, which again appears to be unaélso did not investigate the intermediate- or late-stage behav-
fected by the presence of surfactants. However, thégor. A more recent MC study is due to Fratzl and Penrose
asymptotic domain growth law is substantially altered and, tq14], who considered segregation in AB mixture mediated
the best of our knowledge, there is still no consensus on they a single vacancy. These authors discovered the surprising
functional form of the asymptotic growth law. result that domain growth mediated by a single vacancy is
In a recent paper, we have initiated a study of phase ormuch faster than that for the usual direct-exchange mecha-
dering dynamics with annealed vacandi§]. In the present nism. Moreover, the asymptotic domain growth in their
paper we expand the scope of this study and present detailetudy is consistent with the usual Lifshitz-SlyozgkS)
results for phase ordering dynamics in binary mixtufe®  growth law for phase separation in binary mixtures, viz.,
with annealed vacancies. There have been a number of pre{t)~t3, Before we proceed, it is worth pointing out that
vious studies of this problefi2—15 and we briefly review the Vives-Plane§12] and Fratzl-Penrosgl4] models are in
extant results here. Two classes of systems have been cotire same static universality class as the usual two-state Ising
sidered, viz., the ordering of ferromagnets with annealed vamodel for binary mixtures. This is because a single vacancy
cancies, the NCOP case, and the segregation of binary mixtoes not play a relevant role in the thermodynamic limit.
tures with annealed vacancies, the COP case. Of course, it In this paper we formulate mean-field dynamical models
should be kept in mind that the vacancy field in both casesor phase ordering in binary mixtures with mobile vacancies.
constitutes an additional order parameter, which is conwe pursue two primary goals in this paper. The first is to
served. provide a systematic phenomenological treatment of phase
Srolovitz and Hassolfl12] conducted a MC study of dif- ordering dynamics in ternaryABV) mixtures, with vacan-
fusing impurities(e.g., vacancigson domain growth in the cies(denoted by) acting as a third component in the mix-
NCOP case. They found that the vacancies tended to migrat@re. Our second goal is to use these mean-field dynamical
to the interfacial regions. This leads to a dynamical crossovemodels to obtain detailed numerical results for the two prob-
in the domain growth law fronL(t)~tY? [known as the |ems that we have discussed above. In recent work, Plapp
Lifshitz-Cahn-Allen (LCA) law] in the early stages to a and Gouyet[15] have used similar mean-field dynamical
slower, nonalgebraic growth in the late stages. Howevermodels forABV mixtures to investigate surface instabilities
they did not examine the scaling behavior of the structurgor droplets of the unstable mixture immersed in a stable
factor. Mouritsen and Shali2] also investigated a similar vapor of the mixture.
model (though with antiferromagnetic interactionand ar- This paper is organized as follows. In Sec. Il, we present
rived at similar conclusions. A recent MC study of the the model Hamiltonian for thé BV system and its mean-
NCOP case with a single vacancy was conducted by Vivesield solution. We also formulate mean-field dynamical mod-
and Plane$12]. In their model, dynamics is introduced via els for vacancy-mediated phase separation and ordering of
vacancy exchanges with the or B atoms of a binary mix-  ferromagnets with vacancies. Section Il contains detailed
ture with antiferromagnetic interactions. They find the somenumerical results for the problem of vacancy-mediated phase
what puzzling result that the growth law is faster than theseparation. In Sec. IV, we present numerical results for the
LCA law, a possible consequence of allowing vacancy exdynamics of ordering in a ferromagnet with annealed vacan-
changes with next-nearest-neighbor sites also. cies. Section V ends this paper with a summary and discus-
At the coarse-grained level, the NCOP case can be desion of our results.
scribed in terms of coupled dynamical equations for two or-
der parameters: one for the ordering field, which is noncon-
served; and the other for the vacancy field, which is Il. MEAN-FIELD DYNAMICAL MODELS
conserved. In the classification of Hohenberg and Halperincor pHASE ORDERING DYNAMICS WITH VACANCIES
[17], this is referred to as mod€l. Models in this category
have been numerically simulated by Oletaal.[13] and ana- Consider a lattice model in which each sitean be oc-
lytically studied by Eldert al.[13]. cupied by either a\, aB, or aV “atom.” This model is
The COP case is considerably more interesting becausgpplicable to both ternaryABV) mixtures and ferromagnets
vacancies play a critical role in phase separation dynamics. With vacancies. In the latter contex, andB can be inter-
is well known to materials scientists that Kawasaki exchanggreted as up- and down-spin states, respectively. We assume
kinetics, which involves the direct interchange Afand B that there is only a nearest-neighbor interaction and the en-
atoms in anAB mixture, is energetically unrealistic. As a ergies associated with-A, B-B, and A-B pairs areepa,
matter of fact, it is believed that phase separation in binarggg, andesg, respectively{14(a)]. We further assume that
alloys is mediated by vacancigg8]. Thus, in the context of there is no interaction energy for pairs with at least dhe
binary alloys, vacancies do not merely serve as experimentatom. Then we can write the energy of the system in terms of
complications in phase separation studies. Rather, they areaaspin-1 model with the Hamiltonian
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€nnt €nn—2€ E€Enn— € course, the approach we formulate below generalizes to the

H:WZ SSH'%Z (S'S+SS) K+#0 case in a straightforward fashion and we will also

) () present models foK #0.

_— For the caseK=0, the only solution of Eq(6) for T

i S () >T, (=2qJ/3) is S* =0, P*=2/3, corresponding to the
disordered state. FOF<T,., an ordered solution witls*

whereS,=1, 0, or—1 corresponds to ah, aV, oraB atom #0 emerges, corresponding to a separation iAtoand

at sitei, respectively. We consider the case,= egg=—¢,  B-fich regions. The introduction of nonzekoand fieldsh, A

so that there is an attractive interaction between identicgfonsiderably enriches the phase diagf{a®l. We do notgo

atoms. Then our Hamiltonian reduces to into the details of the complete phase diagram here but will

merely use relevant information wherever necessary.

expt eppt2€
L EAnT €BB ABE
4 )

22
H= _‘]% SiS+ K% S'Sy (4) A. Vacancy-mediated segregation in théABV model

o We first consider the physically relevant situation where
whereJ=(e+ epp)/2 andK = (exg—€)/2. The Hamiltonian  the microscopic stochastic dynamics associated with the
in Eq. (4) is a special case of the well-known Blume-Emery- ABV Hamiltonian consists of nearest-neighbor spin ex-
Griffiths (BEG) model[19] and is known to exhibit a rich changes, but only betweemA-V (1-0) and B-V
phase diagram. In general, the BEG Hamiltonian should alsp_1.,0). we do not permit energetically unrealistic B

include terms involving fields that couple linearly wif  (Kawasakj exchanges. The master equation that describes

(viz., —h%;S) and S (viz,, —AZ;S)). We will investigate  this stochastic dynamics for a systemMbfspins is
the dynamics of phase ordering in this model.

The mean-field solution for the model in E¢) (at tem-

peratureT) is easily obtained20] as d
1 P(S1,.8 S8t

(S9°=(s)° tan{%LE <stk>5}. =m2 2 WSoS)I1+SS,]
K I
XP(S;,....5,S,....5v:1)
J I
2 COS+?E<SLK>S}
2ys_ " 5 +2 2 WS, ~S)[1+S8,]
<S(> J K ! ( ) i Li I I
e s - 2 \S
ZCOS’{T%‘@Q +eXF{T%<SLk> XP(Sp, 8,8 e Syih). )
whereL  refers to the neighbors of sikeand we have set the In Eq. (7), P(S;,....S,...,Sy;t) is the time-dependent

Boltzmann constant to unity. Nonzero external fiefdand  probanility distribution for a spin configuratiofS;}. The

A are trivially incorporated in Eq(5). In Eq. (5) we use the  first term on the right-hand side corresponds to transitions
superscrips to label the static solution. There are two ordergyt of the spin configuration{S} via spin exchanges
parameters, viz.(S,)*, which refers to theAB field, and g..s . The factor[1+SS, ] enforces the constraint that
(S0)° (or 1=(S()?), which refers to the vacancy field. These only trénsitions of the typet|l<—>0 are permitted. The func-

ordgr Earameters are TOI. mderf;endent. offeach other. Ththnal form of the transition probability is chosen to be con-
static, homogeneous solutions of Ef) arise from sistent with the detailed balance condition, viz.,

1 } 1 AH(S—S)
Zsm}‘{—s* Q)= 71— j
. T W(S<S)) 271[1 tanf(—ZT ) . ®
qJ q ’
2 C°S+?S* +exr{7P*} where we associate a time scalemfwith a spin-exchange
process andH (S« S)) is the change in energy associated
qJ with the microscopic process. For simplicity of presentation,
Zcos%?s*} we initially confine ourselves to the case=0 and later
p* = (6)  Present results fok#0. Then we have
9J aK .|
2 cos+?s + ex;{?P

AH(SiHSj):sz (s—sj)sLi—JLZqﬁi (S—S)S,-
whereS* =(S), P* =(S?), andq is the number of nearest I J 9
neighbors of a site.

In our discussion below, we focus on the c&e0 (i.e., We multiply both sides of the master equation 8y and

€ag= — €aa= — €gg), Which corresponds to the spin-1 Ising perform a configuration average to obtdafter some alge-
model, as this simplifies our calculations considerably. Ofbra)
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i J
n— = -2 (S(1-8)-S,(1-SH+ X <[1+skst](sk—sL) tan}‘{z_l_
L Ty

J
=A(SOFX (S~ 2 (S8, ~SSY Y <<s§+82 288t )tanr{ZT(

(10

So far, we have made no simplifying approximations and our dynamical equations are exact within the framework of our
model. Equatior{10) is part of an infinite hierarchy of coupled equations, which are intractable. It is customary to simplify this
exact(but intractable system of equations by invoking a mean-fiéMF) approximation, which yields

<Sk>

=- <sk>+2<sL> E<<sk><sL> (SHS >>+2<<sk>+<82> 2(S(SE)

1

Xtan}‘{z‘]—T(E <SLk)—L2 <SLLk>):|' (11

In similar fashion, we can obtain a dynamical equation(@i) by multiplying the master equation witﬂf and configu-
ration averaging to obtaifagain after some algebra

WS
71%:—2 (SE-5 )(l+SkSL )>+Z <[1+Skst](Se SL (S—SL )tam‘{z_l_

Ss-Ss )D 12

Lk Ly

Now notice that

(SS-SE)(L+SS) =S,

(13

[1+SSLI(Sc— S )(S—SL) =St S, ~ S8, ~ S&

where we have used the fact tfﬁ}zsk. Then Eq.(12) simplifies to
HSE J
m ftk) =—q(SH+ 2 (ST (sk+st—SEst—SKSEk>tanr{ﬁ(2 S, S, m (14)
Cx Cy Lk L, k
Finally, we invoke the MF approximation to obtain the required dynamical equation
oSE J

m f{k) =S+ 2 (S <<sk>+<&k>—<Sk><SEk>—<SE><st>>tanr{ﬁ 2 (8- <SLLK>) . a9

Equationg(11) and(15) constitute our MF dynamical model for phase separation mediated by vacancies. It is easy to confirm
that the spatial integrals of both order parameters are conserved. Furthermore, if we start off with an initial condition in which
there are no vacanciéie.,(S2)=1 everywhergor all vacanciesi.e., (S =(S?)=0 everywherg there is no dynamics at all

and Eqgs.(11) and(15) trivially reduce to

—*_0, n=12 (16)

We can retrace the steps in our calculation above to obtain the appropriate MF dynamical mBdeDfofhis model takes
the form

AT —ae)+ S (80D (SN (SAEN 5 3 (DD LSS+ (- 1S+ (-1

J
—<S§><5Lk>—<5k><sfk>—(—1)”2<Sf><sfk>]tanf{ﬁ( LEK <SLk>_§ (S,

—(—1)“% 2(S)-2 <55Lk>” (17
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ISt 1
™ <;’k> =-aSO+Z (S +5 2, 2 USIHSLH(-DASH+ (DS~ (S8 ~(SHSY ~ (- 1"ASH

2 J 1)n K 18
X(S{ ) ]tanh —— —(=1)">% (18)

S (s 2 (s,)

STl

Finally, for completeness, we also present the mean-field dynamical model that arises for the corresponding nonconserved
dynamics. In the nonconserved case, we only allow spontaneous transitions of the spin @afrabhe+ 1— 0 (or vice versa
on a time scaler,. Of course, theS =0 state in this model can no longer be associated with vacancies as the number of
vacancies must be conserved. The appropriate mean-field dynamical model for the nonconserved case is

2+(—1)" —(S2 J K
2rzﬁ<ast'k>=—<sk>+n_21’2( l )ésk> <S“>>tan>{ﬁLEk <SLk>_(_1)nﬁL2k <sﬁk>} (19)
and
(S 2+ (—1)(S)— (S J K
. <(3?(> :2_3<SE>+n:1'2(_1)n +( ) ;Sk> <Sk>)tan}‘i:ﬁl-zk <SLk>_(_1)nﬁL2k <SEK>:| (20)

We can demonstrate by direct substitution that the statiasymptotically irrelevan{5]. Physically, this is a conse-
solutions in Eq.(5) are explicitly contained in Eqg17)—  quence of the fact that thermal noise affects interfaces on a
(20). The algebra is straightforward, though somewhat infixed length scale, which becomes progressively irrelevant in
volved, and we do not present it here. Furthermore, we canomparison to the growing domain length scales. We expect
also obtain coupled nonlinear partial differential equationsa similar argument to apply here also. Thus it is reasonable
equivalent to our MF dynamical models by identifying the and convenient to work with deterministic models, at least in

order parameter§S, )= y(r,t) and(SZ)=¢(r,t). We do not  the context of late-stage behavior.
present these equations here as the numerical results reported

later are obtained by directly simulating the MF dynamical _ _ _
models presented above. B. Ordering of ferromagnets with annealed vacancies

~ Before we proceed to the next section, we would like to \e next consider the phase ordering dynamics of ferro-
discuss the nature of our modeling via MF dynamical mod-nagnets with annealed vacancies. In this case, there are two
els. Our models are macroscopic-level descriptions of thenechanisms whereby the system evolves, i@., micro-
microscopic dynamical models that were our starting POINtgcpic spin-flip processes, wis flipping from 1— — 1 and
The transition to a coarse-grained level of description is iMice versa andb) exchange of spinsg = = 1) with vacan-

plicit in the _conf_iguration averaging in conjunction with the cies, as in the preceding subsection. We have already formu-
MF approximation. Nevertheless, we expect our macrojieq 5 mean-field dynamical model for the conserved dy-
. . . Ramics of(b) in the preceding subsection. We now specify
as the underlying microscopic _modgls. Furthermore, aS the model corresponding to the nonconserved proce&s.of
consequence gf the smoothening inherent In_our go?rsel-he spins with value Qrepresenting vacanciedo not play a
graining procedure, we expect our macroscopic models 1o, q i the nonconserved dynamics but act as trapping sites

constitute a far more reliable and convenient means of aGy, coarsening domains. Therefore, the impurity fiéﬁ)

cessin_g the asymptotic behavi(_)r of phase ordering_ dynfamin,l,as no dynamical evolution in the context of spin-flip pro-
especially in the COP case. It is well known that, in spite ofCesses and merely plays the role of quenched disorder.

extensive ”“mef'ca' efforts, MC. models of phase separatiori The master equation that describes spin-flip dynamics for
in pure binary mixture§21] are still unable to access the true T
& system ofN spins is

asymptotic regime in which the characteristic domain siz
obeys the LS growth lavi(t)~t*3. On the other hand, at 9
least for pure binary mixtures, the asymptotic behavior is EP(Sl,...,Si RSN )
easily accessed using phenomenological cell dynamical sys-
tem modelg22,23 and MF dynamical modeldl 1(b)] of the
kind discussed here. == W(S—=S)P(S1,...S ... Suit)
The second point we wish to address concerns the deter- '
ministic nature of our models. We can incorporate the effects
of thermal fluctuations in our deterministic models and +2 W(=S—=S)P(Sy,....~S,....50),
thereby obtain mesoscopic-level modgll|. However, in '
the pure case, thermal noise has been demonstrated to be (21
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where the various quantities have the same meaning as be- 4(S,) 5 )
fore. The transition probability¥(S——S) has the usual 74— =L2 ((Sk><SLk>_<Sk><SLk>)_LE ((S(SL
k k

form

_ 2 J _
(28)
where 73 is a characteristic time scale for the spin-flip pro-
cess. In this case we have and
9 2
AH(S—-8)=2]§2 S, (23 u%w (29

which is valid for arbitraryK. This is because the vacancies Wherer, is the time scale of the microscopic dynamics. It is
are unaffected by the microscopic dynamics and the secon@gain obvious that the static solution from E&) is con-

term in theABV Hamiltonian stays unchanged. tained in Eq(28). We can also coarse grain further to obtain
We next multiply both sides of the master equationdpy  the nonlinear partial differential equation corresponding to
and perform a configurational average to obtain Eq. (28). At the phenomenological level, this is simply ob-

tained by appending an extraV? operator to the chemical
d J potential in Eq.(27) [8].
73 <astk> :—<5k>+<5§ tan){fg SL,(D- (24) We will next present numerical results obtained from
K simulations of these models. In particular, Sec. Ill contains
Finally, we invoke the MF approximation to obtain the dy- results _from a s_imulation of phase separation r_nediat_ed by
namical model vacancies. Section IV presents results from a simulation of
ordering dynamics in a ferromagnet with annealed vacancies.

NS J In both cases, we directly simulate the appropriate MF dy-
TS —(Sk)+(8§>tan?‘{f§: (SLK>} (250  namical models as these provide a convenient alternative to
Lk the partial differential equation models.

It is easy to verify that
. NUMERICAL RESULTS FOR VACANCY-MEDIATED

&(Sﬁ) PHASE SEPARATION
T3 =0, (26)

Our numerical results for vacancy-mediated phase separa-
tion were obtained using the MF dynamical models in Egs.
as is apparent from the microscopic dynamics. It is also ob¢11) and (15) (i.e., for K=0), with 7; scaled into the time
vious that Eq(25) contains the static solution fdS,) from  variable. We simulated these coupled equations in two di-
Eq. (5). mensions on a lattice of siZd? using a simple Euler dis-

It is instructive to identify the order parameter fields cretization scheme with mesh sia¢=0.01. Periodic bound-
(S)= ,/,(F,t) and(Sﬁ}z ¢(F) in Eq.(25). We Taylor expand ary conditions were applied in both directions. We confirmed
terms in the argument of the tanh function and then perfornthat further reduction of the mesh size did not change our
a small-argument expansion of the tanh function. This prohumerical results. The parameter values for our simulation
cedure yields the nonlinear partial differential equationwere K=0 and T=0.375T.. Results similar to those pre-

equivalent to Eq(25), sented here are obtained for a wide range of temperature

values with the only change being in the coefficients of

Wy [ad - . 1fqu® . . o gowthlaws. e
3 = d(N) = 1{p(r,t)— 5| =] d(r)e(r,t) The initial conditions for the S,) and(Sy) fields in each
at T 3\ T . L

run were chosen to be uniformly distributed random fluctua-

Ja® . 5 = tions about some background and mimicked the disordered
+ OV, (27)  homogeneous state before the quench. The background value

was O for the(S,) field, corresponding to an equal mix Af

wherea is the lattice spacing. Thus quenched vacangies ~ @ndB atoms. For theS}) field, we considered background
purities have the effect of randomizing the coefficients of valuesvo=0.93 and 0.96, corresponding to a rather high
the TDGL equation for the nonconserved c#26,8]. The concentration of vacancies. We used these high concentra-
desired mean-field dynamical model for ordering in ferro-tions as we were interested in investigating nonuniversal ef-
magnets with vacancies is obtained by combining terms ifects and/or different late-stage dynamics which may result
Egs.(25) and(26) with terms in Eqs(17) and (18), respec-  because of the presence of vacancies.
tively. We studied phase ordering in tBeBV model using three
Finally, for completeness, we consider the case wifere t0ols: evolution pictures and order parameter profiles, the
and B are allowed to interchangé.e., Kawasaki kinetids time-dependent structure factor for tA® field, and charac-
and the vacancies or impurities act as quenched disorder. TH@ristic domain length scales. The time-dependent structure
resultant mean-field dynamical model is factor S(k,t) for the AB field is defined as
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S(k,t) =( (K, t) (K, )*), (30)

where ¢(k,t) is the discrete Fourier transform of theB
field ((S,)) with wave vectork and timet. In our discrete
simulation, the wave vectors take valuesk
= (2m/N) (ny,ny), wheren, andn, range from—N/2 to

N/2—1. The angular brackets in E(O0) refer to an averag-
ing over independent initial conditions. In our simulations

size 256 as an average over 50 independent runs. As we
have remarked earlier, an interesting aspect of phase order Time = 3200
ing systems is the dynamical scaling of the time-dependent g ——
structure factor, i.e., the morphology of coarsening domains ™ %

is unchanged in time. The dynamical scaling form of the |
structure factor for isotropic systems is

Time = 8000

S(k,t)=L(t)IF (KL(t)), (32)

where d is the dimensionality andF(x) is a time-
independent master function. In our simulations, we spheri- w3

cally average the structure factS(IZ,t) to obtain the scalar
structure factoiS(k,t), which we will present subsequently.

We define the characteristic length scal@) as the re-
ciprocal of the first moment of the spherically averaged
structure factor, i.el.(t)=(k)~*, where

FIG. 1. Temporal evolution from a disordered initial condition
for our mean-field dynamical model of vacancy-mediated phase
separation in th& BV model withK=0. These pictures were ob-
tained from a simple Euler discretizatiofwith mesh sizeAt
=0.01) of Egs.(11) and(15) (with 7; absorbed into the definition
of time t) on a two-dimensional lattice of size 128Periodic
boundary conditions were imposed in both directions. The param-

kadk k Sk,t)

0 eter value for this simulation wals=0.375T . . The initial condition
(k)= " (320  for the(S,) (or AB) field consists of uniformly distributed small-
f "4k gk,t) amplitude fluctuations about a zero background, mimicking a ho-
0 mogeneous state. The initial condition for th87) (or vacancy

field consists of similar fluctuations about a backgrouwger 0.93.

In Eq. (32), the upper cutofik,, is taken as being half the Regions with positive(S,) are marked in black and regions with
magnitude of the largest wave vector lying in the Brillouin Negative(S,) are not marked. Regions whe(8) falls below 0.7
zone of our discrete lattice. We have confirmed that thdi-€- vacancy richare marked as crosses and are confined to the
structure factor has decayed sufficiently by this value so th(,:{pterfa_cial _regions, asis (_:I_ear from the pictures. The dimensionless
a further increase ik, does not affect the value gk). The evolution times are specified above each frame.
characteristic length scale can be defined in a number of
ways, all of which are equivalent in the dynamical scalingtion. The deviations fronv, in the interfacial regions are
regime|[2]. irrelevant in the thermodynamic limit.

Figure 1 shows an evolution picture obtained from our However, there is a range of valueskofwhere the model
MF dynamical model for vacancy-mediated phase separaalso exhibits three-phase coexistence, with the third phase
tion, implemented on a 12dattice. The initial condition is corresponding to &-rich phase. In this situation, the thick-
as described above and the background vacancy fiald is ness of the vacancy layer at the interface increases with time
=0.93. Regions wherg€S,) is positive (say, A rich) are  because the overall interfacial area is diminished as the do-
marked in black and those whe(&,) is negative(B rich)  mains coarsen. This makes the surface tension time depen-
are not marked. We interpret regions whég) falls below  dent and results in a slowing dowand possibly freezingof
0.7 as being vacancy-rich and these are marked by crossednmain growth. Similar effects are seen in the case of binary
There are two important features that emerge from these pignixtures with surfactantfl1]. We are presently investigat-
tures. Firstly, vacancy-mediated segregation dynamics givesg the dynamical evolution of the phase separating system
rise to a morphology that is similar to that obtained from thein this parameter regime in greater detail.

usual Kawasaki exchange in puké8 mixtures. Second, va- Figure 2 shows the variation of the order-parameter fields
cancies rapidly migrate to the interfacial regions as this i€long a specified cross section in the evolution pictures of
energetically favorable. Fig. 1. The cross section is parallel to the horizontal axis and

The static solutions for the phase separation prolfieen ~ midway up the vertical axis. The solid and dashed lines refer
with fixed concentrations of\, B, and V) in the caseK to the fields(S,) and(S?), respectively. It is evident from
=0 correspond to two-phase coexistence, i.e., in equilibFig. 2 that the vacancy concentration is maximum in At
rium, there areA-rich andB-rich phases with a uniform va- interfacial regions. Similar pictures are obtained fog
cancy fieldvy, which is the same as that in the initial condi- =0.96 also and were presented in an earlier papék
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Figure 3 tests the dynamical scaling of the time-dependenure case with spin-exchange dynamics and those for
structure factor for the temporal evolution depicted in Fig. 1.vacancy-mediated spinodal decomposition with=0.93
Figure 3a) superposes data faB(k,t)(k)? vs k/(k) from  and 0.96. Data for the pure case are obtained from a two-
dimensionless times 1600, 4800, 6400, and 8000. The daiimensional simulation of a MF dynamical model similar to
from different times collapses onto a master curve reasonthat described previously. The parameter value for our simu-
ably well, except in the peak region, where there is still somegtion of the pure case i$=0.75T,, whereT, is the MF
drift. Figure 3b) plots the data of Fig.(@) on alog-log scale  cyitical temperature of the Ising model. The scaled structure
and shows that the data collapse is good in the intermediaigqtors are in reasonable agreement, but appear to be slightly
tail (rjeglgf? alﬁ_o.hThe extrtla(;n;?ktag "39'0” sho;/vs a SICI)W utf]'offset from each other. This is a possible consequence of the
\k/1varr Irrll t,hW Ich we wou h : eﬂ:) ISCUSS at some ‘eng it slow approach to asymptotic behavior in vacancy-mediated

ere. € pure case, where thereé areé no vacancies, | é%gregation dynamics. As a matter of fact, the scaled data for
known that the finite interfacial thickness,, gives rise to . — . X
. . L the case withvy=0.93, corresponding to a higher vacancy
nonuniversal effects in the tdi26]. As the domain sizé& (t) . : .
concentration and faster domain growth, is somewhat closer

increases,o/L(t)—0 and the nonuniversal effects are . .
pushed out to higher and higher values of the scaled wavi? the pure case than the Qata fQ;:O.QG. F|gure ) 'S a
vectork/(k). On the scaled plot analogous to FighBfor log-log plot of the data in Fig. @) and highlights the differ-

the pure case, this is manifested as a marked upward drift iAnce between the scaled structure factors for the pure case
the tail of the structure factor. Asymptotically in time, the and the vacancy-driven case. The characteristic shoulder in

structure factor for the pure case exhibits the Porod taifhe scaled structure factor for the pure case/ak)=2.0
[S(k,t)~k~@*1 for largek], which is associated with scat- @Ppears to be absent in the vacancy-driven case. The extreme
tering off sharp interface27). tail for the pure case also lies below the tails for the vacancy-

In the present case, our data show only a weak upwarériven case. However, with the passage of time, the extreme
drift in the tail. A possible reason for this is the extremetails in all cases will rise and asymptotically approach the
softness of vacancy-rich interfaces compared to interfaces iRorod tail[marked as a dashed line in Figl#.
the pure case. Furthermore, as we will see later, domain Finally, Fig. 5 studies the time dependence of the charac-
growth is considerably slower in the vacancy-driven caseteristic domain size:(t) =(k)~*. Figure §a) plotsL(t) vst
Nevertheless, even in the present case, we expect to recovier the pure casdup to t=4000) and the vacancy-driven
Porod’s law at sufficiently long times because the interfaciacases wittvg=0.93 and 0.9@up tot=8000). We have used
thickness does not grow with time. However, in the physicala nonlinear fitting routine to fit the length scale data to the
situation where we have a macroscopic vacancy-rich layefunctional formL(t)=a+bt? and the resultant best fits are
growing at the interface, the effective interface width is timedenoted as solid lines on the data sets. The best-fit growth
dependent. From simple geometric considerations, we finégxponents arep=0.33+0.01 for the pure casep=0.34
that the thickness of the vacancy layer is proportional to*0.01 forvy=0.93, and$=0.32+0.01 forvy=0.96. These
L(t). If we make the reasonable assumption that the interfaare in excellent agreement with the LS growth lat) ~a
cial thicknesso,(t) grows at the same rate as the thickness+bt*. Figure §b) is a log-log plot of the data from Fig.
of the vacancy layerg,(t)/L(t)=const. In such a situation, 5(a) for the vacancy-driven cases. In this case, we fit the data
we would not expect to recover Porod’s law even asymptotiby a straight line and the best-fit lines are superposed on the
cally in time. appropriate data sets. The slopes correspondpt00.33

Figure 4a) compares the scaled structure factor for the+0.01 forvy=0.93 and¢=0.32+0.01 forvy=0.96.
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FIG. 3. (a) Scaled structure factois(k,t)(k)? vs k/(k) for the FIG. 4. (a) Comparison of scaled structure factors for the pure

evolution depicted in Fig. 1. The structure factors are obtained orcase (denoted byO’s) and the vacancy-driven cases with
systems of size 236as an average over 50 independent runs. We=0.93 (denoted byI's) andv,=0.96 (denoted byA’s). The data
superpose data from dimensionless times 1600, 4800, 6400, arfdr the pure case is obtained using statistics similar to that for the
8000 in the figure(b) Data from(a), plotted on a log-log scale. The vacancy-driven cases. Data for the pure case are from dimension-
dashed line has a slope of3 and refers to the two-dimensional less time 4000 and for the vacancy-driven cases from dimensionless
(2D) Porod tail[i.e., S(k,t)~k 2 for largek in two dimensiong time 8000.(b) Data from(a), plotted on a log-log scale. Symbols
which characterizes scattering off sharp interfaces. have the same meaning as(@. The dashed line refers to the 2D
Porod tail, as in Fig. ®).

For parameter values that give rise to three-phase coexist-
ence, the vacancy layer at the interface grows with the passcale 73, which characterizes spin flips, into the time vari-
sage of time and thAB interfacial tension diminishes dras- able. _ _
tically. The time dependence of the interfacial tension results We simulate this MF dynamical model on a two-
in considerably slower growth at late timgkl] and we are dimensional lattice of siz&l2. The details of the simulation

presently studying this in greater detail. and calculated quantities are the same as in Sec. lll. The only
additional parameter we have here is the ratjor;, which
IV. NUMERICAL RESULTS FOR ORDERING we set equal to 0.25, so that the frequency of spin exchanges
IN FERROMAGNETS WITH VACANCIES is a quarter of the frequency of spin flips. Because of the

rapid domain growth in the case with nonconserved order

We next consider the ordering of a ferromagnet with an-parameter, we use considerably larger systems here so as to
nealed vacancies. In the terminology of th8V model, we  avoid finite-size effects. Thus structure factors and character-
permit spin flips from +»—1 and vice versa with a time istic length scales are computed for systems of size& 5&2
scalers, as modeled by Eq$25) and (26). In conjunction  an average over 50 independent runs.
with these spin flips, we consider spin exchangels— 0, so Figure 6 shows evolution pictures for ordering in our MF
that a magnetic atom can move into a vacant site. We assalynamical model of ferromagnets with annealed vacancies.
ciate a time scale; with the spin-exchange process and useThe vacancy background field i5;=0.93 and the system
the appropriate model in Eqél1) and(15), i.e., we focus on  size is 256. As before, regions with positivéS,) (i.e., rich
the K=0 case again. The overall model has one nonconin A or up sping are marked in black and regions with nega-
served and one conserved order parameter. The dynamics fe (S,) (i.e., rich inB or down sping are unmarked. Fur-
the NCOP field(S,) is described by a combination of Eqgs. thermore, regions whers?) falls below 0.7(defined as be-
(11) and (25) and the dynamics of the COP fiel@&?) is  ing vacancy richare marked by crosses. As in the conserved
modeled by Eq(15). For convenience, we rescale the time case, vacancies migrate to the interfacial regions because this
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FIG. 6. Temporal evolution from a disordered initial condition
for our mean-field dynamical model of ordering in a ferromagnet
with annealed vacancies. This modelith K=0) is obtained by
combining Eq.(11) with Eq. (25) and Eq.(15) with Eq. (26). The
‘ . , other parameter values afe=0.75T; and 73/ 7;=0.25. The simu-

6 7 8 9 lation details and our graphic representation are the same as in Fig.
1, except that the system size in this case is?256

0.5

FIG. 5. (a) Characteristic length scalgt) vst for the pure case

(denoted byO's) and the vacancy-driven cases with=0.93 (de-
noted by[T's) andv,=0.96 (denoted byA’s). We use a nonlinear ~ Structure factor for the pure case exhibiting a sharper falloff
fitting routine to fit data to the forrh(t) =a+bt?. The best-fit ines  than that for the case with vacancies. This difference is high-
are superposed on the appropriate data sets and the correspondlighted in the log-log plot of Fig. @®). Furthermore, scaled
exponents are as follows: pure cas¢=(0.33+0.01), v,=0.93  structure factors do not agree in the extreme tail regions also.
(¢=0.34+0.01), andv;=0.96 (¢=0.33=0.01).(b) Length scale For the pure case, the scaled structure factor has almost
data for vacancy-driven segregation fr@e, plotted on a log-log  reached its asymptotic form in that it exhibits a Porod tail
scale. Symbols have the same meaning dg)inVe have fitted the  over a large region. However, the extreme tail for the cases
data to straight lines and these are depicted on the appropriate dajgth vacancies differs substantially from the Porod tail on
sets. The slopes for the best-fit lines are as follows= 0.93 (¢ the time scales considered.
=0.33+0.01) andvo=0.96 (¢=0.32+0.01). Finally, Fig. 10 plots the characteristic domain sizg)

vs t for the pure case and the vacancy-affected case with
is energetically favorable. Figure 7 shows the variation of theyy=0.93 and 0.96. We have attempted to fit our data to the
order-parameter fields along a horizontal cross section of thpower-law formL(t) =a+ bt? using a nonlinear fitting rou-
evolution pictures in Fig. 6. The solid and dashed lines refetine. The resultant best fits are denoted by solid lines on the
to the (S,) and (S?) fields, respectively. Figure 7 demon- appropriate data sets and the best-fit exponents are specified
strates clearly that there is a surfeit of vacancies in the interin the figure caption. These exponents are consistent with the
facial regions, as is expected. Lifshitz-Cahn-Allen growth lawt(t) ~a+ btY? which char-

Figure 8a) plots the scaled structure facts(k,t)(k)? vs  acterizes domain growth in the pure case.

k/{k) for dimensionless times 400, 600, 800, and 1000. Re-

call tha}t_ these_ d.ata are obtained on %igstems to avoid _the V. SUMMARY AND DISCUSSION
possibility of finite-size effects at later times. The quality of
scaling is reasonable. Figuréb3 plots the data of Fig. @) Let us end with a brief summary and discussion of our

on a log-log scale and demonstrates that the scaling extendssults in this paper. We initiated this study with two goals in
into the intermediate tail region. Again, there is an upwardmind. First, we wanted to formulate a coherent phenomeno-
drift of the extreme tail, but at a very slow rate. As discussedogical framework to investigate phase ordering dynamics in
earlier, this is a possible consequence of the extreme softneternary mixtures. Monte Carlo models, though relatively
of the interfaces resulting from the deposition of vacancies.easy to formulate, are not particularly useful for investigating
Figure 9a) compares the scaled structure factors for thethe asymptotic behavior of phase ordering dynamics, espe-
pure case and the vacancy-affected case with0.93 and cially in cases where the ordering field is described by a
0.96. The agreement is not particularly good, with the scaledonserved order parameter. On the other hand, phenomeno-
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FIG. 9. (a) Analogous to Fig. @), but for the case of ferromag-

FIG. 8. (a) Scaled structure factoiS(k,t)(k)? vs k/(k) for the  nets with annealed vacancies. All data sets are from dimensionless
evolution depicted in Fig. 6. Structure factor data are obtained otime 1000. Data for the pure case are denotedby and for the
systems of size 5F2as an average over 50 independent runs. Thisvacancy-affected cases hy's (for v,=0.93) andA’s (for v,
figure superposes data from dimensionless times 400, 600, 800, ard0.96).(b) Data from(a), plotted on a log-log scale. Symbols have
1000.(b) Data from(a), plotted on a log-log scale. The dashed line the same meaning as (). The dashed line refers to the 2D Porod
refers to the 2D Porod tail, as in Fig(3. tail.
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Our second goal in this paper was to address two impor-
tant phase ordering problems using these models. The first
problem we considered was that of vacancy-mediated spin-
odal decomposition. Our numerical results for this and the
subsequent problem were obtained in a parameter range cor-
responding to two-phase coexistence. It is generally believed
that spinodal decomposition proceeds via vacancy-atom ex-
changeg4 18] rather than the Kawasaki spin-exchange kinet-
ics customarily used to model phase separation. Our numeri-
cal results demonstrate that vacancy-mediated spinodal
decomposition gives rise to domain growth characterized by
a length scal& (t), which obeys the Lifshitz-Slyozov growth
law L (t)~t* over the time scales of our simulation.

As far as the scaled structure factor is concerned,
t vacancy-driven spinodal decomposition is characterized by
FIG. 10. Analogous to Fig.(8), but for the case of ferromag- appm)?'m.ate'.y the same functional form as the usual_ Ka-

evtx{asakl kinetics. However, there are subtle points of differ-

nets with annealed vacancies. The nonlinear best-fit lines are sup iallv in the tail . We beli that th
posed on the appropriate data sets. The corresponding growth e nce, especially in the tail regions. Vve believe that these

ponents areb=0.51+ 0.01 (for the pure case, denoted by's), ¢ ifferences are nonuniversal effects due to extremely soft

=0.50+0.01 (for v,=0.93, denoted by7's), and ¢=0.51+0.01 vacancy-rich interfaces. We are presently studying this prob-
(for vy=0.96, denoted byA's). lem in the physically relevant regime where thBV system

shows three-phase coexistence. In this situation, the phase

logical models have been highly successful in elaborating théeparating system exhibits a time-dependent interfacial
asymptotic behavior of phase ordering dynamics, at least fofhickness due to the ongoing accretion of vacancies at the
the pure case. It is thus reasonable to expect that the sartéierface, resulting in a slowing down of the asymptotic do-
would also be true for more complicated problems. main growth law. Furthermore, in this case, the Porod tail is
We model ternary phase ordering mixtures by ARv ~ not recovered even asymptotically because of the growing
lattice model, wheré andB refer to components of a binary interfacial width. . .
alloy in the case with a conserved order parameter, or up and 1he second problem we considered was that of ordering
down spins in the case with a nonconserved order parametdP ferromagnets with annealed vacancies. Again, the results
ABV model can be rewritten in terms of a spin-1 model withdomain length scale(t) obeys the Lifshitz-Cahn-Allen law
the statesS =1, 0, and—1 corresponding ta, V, andB, L(t)~t*2 over the time scales of our simulation. As far as
respectively. We associate kinetics with this model and obscaled structure factors are concerned, the functional form
tain MF dynamical models using a methodology based orfor the pure case differs from that for the pure case with
the master equatiof6]. In all, we consider four different Vvacancies. It is our belief that this is a consequence of strong
situations that correspond ta) conserved kinetics in which nonuniversal features introduced by the time-dependent in-

+1<0, (b) nonconserved kinetics in whickt 10 and terface thickness. Clearly, longer simulations of larger sys-
vice versa/c) nonconserved kinetics in whichl——1 and  ems are required before we can make conclusive statements

vice versa, andd) conserved kinetics in which 1> —1. about the apparent differences in the scaled structure factors.

The resultant MF models are dynamical equations for the AS We have remarked earlier, our modeling in this paper
order parameteréS,) and(S2), which describe thé\B and ~ ¢a" easily be extended to other ternary mixtures a]so. It is
V fields, respectively. They all contain the correct MF staticOU" hope that the results in th'? paper will faC|I|tat_e Investl-
solution, which is an important check on their reasonableg‘?tIon of_the late-stage behavior Of. phasg ordering ternary
ness. Various physical problems involvidgBV mixtures mixtures in general anABY models in particular.
can be investigated as comblnatlor_ws of modéi};—(o_l)_ _ ACKNOWLEDGMENTS
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